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Abstract
This short paper describes a systems biology software tool that can engage in a dialogue with a biologist
by responding to questions posed to it in English (or another natural language) regarding the behavior of a
complex biological system, and by suggesting a set of “facts” about the biological system based on a time-
tested “generate and test” approach. Thus, this bioinformatics system improves the quality of the
interaction that a biologist can have with a system built on rigorous mathematical modeling, but without
being aware of the underlying mathematically sophisticated concepts or notations. Given the nature of the
mathematical semantics of our Simpathica/XSSYS tool, it was possible to construct a well-founded
natural language interface on top of the computational kernel.  We discuss our tool and illustrate its use
with a few examples. The natural language subsystem is available as an integrated subsystem of the
Simpathica/XSSYS tool and through a simple Web-based interface; we describe both systems in the
paper. More details about the system can be found at: http://bioinformatics.nyu.edu, and its
sub-pages.

Introduction
Many biologists face the hurdle of interacting with bioinformatics analysis tools that
require mathematical sophistication and training. For example, drawing qualitative
conclusions from time-course experimental data and simulated traces of mathematical
models involves manually examining the data plots – possibly generated from differential
or stochastic models – which are often fitted to actual experimental observations by
means of involved statistical filtering procedures.  As the number of traces and the
amount of quantitative data increase, and their relationships become more intricate, this
process not only becomes exceedingly time-consuming, but also bewilderingly complex.
In addition, the process is further complicated by the care needed to avoid false
inferences (either positive, negative, or both) when interpreting experimental data that is
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corrupted by highly correlated stochastic noise processes—a problem that worsens with
dimension.  Unfortunately, this is true of all currently available experimental datasets
dealing with biological phenomena, e.g., microarray time-course experiments and models
of complex biological systems, as they usually involve a large number of experimental
conditions that are inter-related with one another.  To address these problems, we devised
the Simpathica/XSSYS Trace Analysis Tool, a bioinformatics system that enables users
to query these datasets qualitatively using a propositional temporal logic.

Alas, the nature of our solution to the problem of complex data analysis introduces one
more layer requiring a specialized training in the form of formulating hypotheses in
temporal logic.  Therefore, to make the system accessible to biologists, we have now
integrated a natural language query subsystem within the Simpathica/XSSYS Trace
Analysis Tool.  In the following we describe our approach and give a few examples of its
use.  Finally, as an interesting avenue of exploration we also describe a prototype
implementation of a “story generation” system based on a restricted exploration of the
satisfiability of temporal logic sentences over a set of (simulated) traces of a biological
system.

Figure 1. The Simpathica Main Window. The system being analyzed is the “repressilator” circuit
(EL00). The top left frame contains a list of the reactants. The bottom left frame is used to insert
different kinds of reactions selected from a list of known reactions. Finally the right frame contains a
depiction of the reactions' network.
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 Description

The Simpathica/XSSYS Trace Analysis Tool (APP+03) uses a branching-time
propositional temporal logic (E90) to formulate queries about the evolution of a
biological system. Temporal logic (TL), also called tense logic, is a modal logic that
incorporates special operators, or modes, that have a “temporal” interpretation. More
concretely, it analyzes time course data sets for each observable variable using a concise
and semantically well-founded temporal logic language. The Simpathica/XSSYS
system can utilize data from a variety of sources, e.g. the NYUMAD and NYUSIM
databases (RAC+01), various BioSpice modules (B03), PLAS files (V00), and simple
CSV text files.

Temporal Logic has been studied in depth in the context of systems whose behavior
changes in time, for instance, computer hardware, network protocols and engineering
systems. We omit a detailed introduction to any or all of many specific Temporal Logics
that have been introduced in the past. Instead we concentrate on the main ideas at the
core of these logics in order to provide the intuition about how it can be used in the
analysis of biochemical systems.

Fundamental to a temporal logic is the notion that time-dependent terms from natural
language, such as “sometimes”, “eventually” and “always,” can be given a precise
meaning (semantics) in terms of the abstract behavior of a system under discourse. As an
example, consider the following sentence:

The concentration of guanosin triphosphate (GTP) is equal to k.

Such a sentence is true only in certain circumstances. Given a biological system in
equilibrium the above sentence may or may not be true at any or all instants of time.  In
particular, we can easily construct sentences (in a suitable natural language) that express
the fact that, given a certain set of initial conditions the above sentence will eventually
hold true. Temporal Logic precisely formalizes the meaning of the adverb eventually
(and other such “modes”: always, infinitely often and almost always) and the resulting
semantics lead to a precise model-checking algorithm for determining the validity of TL
sentences in the context of an automaton.

This particular attribute of TL is very important as it concisely captures the notion of a
logical property like “steady-state” and formalizes this notion in a simple consistent way
that is directly handled by the model-checking algorithm.

Consider a system M  and a (simulation) trace trace(M). If we consider a state s in
trace(M), we can simply check if all the first derivatives in s are 0. Suppose we have a
procedure that answers yes (or no) when this is the case. Let us call this predicate,
zero_derivative . Suppose that there actually is a state s' in trace(M)  where
zero_derivative yields yes. Now, by the rules of Temporal Logic the following statement
would be true

Eventually(zero_derivative)

for each instant from the start, at least up until the instant characterized as state s'.
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Now we can expand the language of Temporal Logic and introduce a new predicate
“steady state” to be a synonym of the following concept: there exists an instant (a state s'
in trace(M)) after which zero_derivative will always be true. More formally,

steady_state(M)

is defined to be logically equivalent to the following:

Eventually(Always(zero_derivative))

meaning that, when we consider the simulation (or in vivo) trace of the system there will
be a time where all the rates of change of the system's variables reach 0 and remain at that
value.

Alternatively, we could be more selective and ask whether some specific variable reaches
the steady state. We can determine the answer as a result of the Definition 4.

steady_state(M, GTP).

Another set of properties that we may want to express (and subsequently check) is the
one involving “persistence.” In other words, properties of the form: something is always
true (or false). For instance, we could ask whether in a given system

Always(GTP > k).

Thus, we query whether the GTP level always remains greater than k, independent of
other changes occurring during the evolution of the system.

The previous discussion illustrates the main ideas needed to translate an English sentence
involving temporal claims into a query in temporal logic. The translation from English to
TL is rather straightforward. Simple conjunctions (“and”s), disjunctions (“or”s) and
negations (“not”s) can be expressed directly

Suppose we wish to determine if (1) our system reaches a steady state and (2) the level of
GTP is less than k after a certain instant. This statement is simply expressed in TL as

steady_state and Eventually(Always(GTP < k)). (a)
Note that the validity of the above statement is completely determined by the two
constituent sub-expressions. Furthermore, the truth property of the statement requires
examining the entire system trace, since steady_state is a “global” property, and the
second conjunct has the same form. To appreciate the subtleties of TL, consider the
following expression: eventually the system will be in steady state and the level of GTP
will be less than k.

Eventually(steady_state and Always(GTP < k)). (b)
Given the properties of TL, the above expression (if true) will actually guarantee that
when the system attains the steady state, it also has a GTP level less than k. This is a
different statement than (a), and it shows how flexible and yet precise a TL statement can
be, without sacrificing a high degree of expressive power.

There are other built in operators like conditionals that describe the system or the variable
in a qualitative way.  For example, the statement

Always(CDK1 > 3 * CDC25)
implies Eventually(steady_state()).
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returns true if it is the case that if CDK1 is always more than 3 times CDC25, the system
eventually reaches steady state, that is, there being no net change in the values of the
quantitations. Nested queries such as

Always(PRPP = 1.7 * PRPP1)
implies

steady_state()
and Eventually (Always(IMP < 2 * IMP1))
and!Eventually (Always(hx_pool <!10 * hx_pool))).

are just as simple for our tool to evaluate, though difficult for a human to understand at
first glance (the variables PRPP, PRPP1, IMP, IMP1, hx_pool, and hx_pool1
appear in the analysis of the purine metabolism pathway described in (APUM03).)

In (APP+03) we discuss some of the mathematical and computational problems
associated with this approach, e.g. the dependency of the analysis on the density of time
points.  The Simpathica/XSSYS system essentially implements a model-checking
algorithm (CGP99) based on a “labeling” of each state, i.e., of each time-indexed time
point. The labeling of states enables the Simpathica/XSSYS Trace Analysis Tool to use
temporal logic to query complex logical dependencies of the variables on one another,
using also some specialized “verbs” whose meaning should be more intuitive for a
biologist.

For example, the query

Eventually(growing(CDK1)) and Always(CYCB > CDC25)).

would evaluate to true if within the data set, CDK1 eventually starts increasing and CYCB
concentration always remains greater than that of CDC25.  If the query is false over the
trace, the system would indicate the time at which it first violates the condition.

Query Maker – A Natural Language interface

Although the Simpathica/XSSYS system is very powerful and effective, it is not very
accessible to users without experience with the temporal logic, an admittedly complex
and esoteric mathematical tool for the layperson.  Therefore, we decided to wrap the
Temporal Logic system with a natural language interface to make the system more
accessible.  Of course, several other systems have approached similar problems by
providing a natural language interface to a computational tool. E.g., pioneering work at
Edinburgh University in natural language in the context of model checking for hardware
verification showed that a subset of English is sufficient to express temporal logic queries
(HK99).  We adapted the approach to our biological setting by building a specialized set
of “verbs,” immediately recognized by a biologist (e.g. “growing”, “steady state”, “flat”,)
and then tied it to our specialized data analysis tool.  All in all, we assumed that “if a
question cannot be asked in English, it will not be asked by a biologist.” The Query
Maker natural language interface is designed with this principle in mind.

The interface is built on top of a simple, context-free semantic parser (N92).  Figure 2
shows a screenshot of the systems.  The questions are first parsed, and have their
semantics interpreted following a set of grammar rules. Then the questions are translated
into temporal logic queries, which are then fed into the temporal logic system. Finally,
the Temporal Logic queries are partially compiled with a “Just-In-Time” compiler that



CIMS-TR 2004 853 6

produces machine code for them. The system runs under Windows, Mac OSX and Linux,
and  i t  a l so  has  a  Web-based  in te r face  a t  the  address
http://bioinformatics.nyu.edu:3000/home/lasp.

For example, if a biologist asks

“Is it eventually the case that if var1 is always between var2 and var3 and var4 is
always constant, then v5 will always be bounded by v3?”

the question will be translated to

Eventually(Always(var1 > var2 and var1 < var3)
 and Always(flat(v4)))

implies Always(v3 < v5).

Even though Query Maker has many limitations, because of its small vocabulary and the
fact that not all temporal logic queries can be expressed clearly in plain English, we can
see that it is already able to formulate and manipulate relatively complex queries.  Our
hope is that after repeated usage, biologists would be able to formulate their own
temporal logic queries with desired complexity.

Example: the Yeast Cell Cycle
The cell cycle is the sequence of repeating events through which a cell grows, replicates
its genetic material, and finally, physically separates into two daughter cells.  It is a
tightly controlled process divided into the G1, S, G2, and M phases, corresponding to
growth, duplication of genetic material, and finally mitosis.  The control mechanisms of
the budding yeast cell cycle  can be accurately modeled, as in Novak and Tyson (NT97,
NT01).  We will inquire the traces of the wild-type model as well as a mutant that lacks a
particular control mechanism (SK-knockout mutant).

It is known from various published analysis – e.g. (NT97, NT01) – that elimination of the
SK control in the G1 phase causes CKIt (Cyclin-dependent Kinase Inhibitor) levels to
remain high, disrupting the cycling of the events.  As a result, the mutant system reaches
a premature steady state, while the wild-type continues oscillating through the cell-cycle.
In other words, the question

“Will the system eventually reach steady state?”
will yield a true answer for the mutant case, and yield a false answer for the wild-type.

It is also known that in wild type yeast, when CKIt level drops below CycBt, active
Cyclin B begins to form and activates a cascade of events that propels the cell to divide.
In the mutant, since CKIt levels do not drop due to the absence of SK, Cyclin B level
remains low.  Therefore, the question

“After 0.1 minutes, when CKIt is less than or equal to CycBt, does CycBt increase?”
will yield a true answer for the mutant case, and yield a false answer for the wild-type.  In
the mutant case the system answers with
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The formula
 Eventually((TICK > 0.1)
  and AU(not(CKIT <= CYCBT)
    and not(GROWING(CYCBT))
    UNTIL
    (CKIT <= CYCBT
     and GROWING(CYCBT))))
is false over the trace.

I.e. the formula is false in the mutant case.  Note the “internal” variable TICK, which
represents time.

Integrated and Web-based User Interfaces

We have built two user interfaces for the Query Maker subsystem of XSSYS: an
integrated one for the stand-alone application, shown in Figure 2, and a Web based one.

The integrated interface allows a user to formulate questions and check answers while
being able to access all the functionalities of the XSSYS system.  We also provide a
simple “Help” facility that explains in a graphical way the meaning of each temporal
logic operator, and that explains how to formulate questions that make them.

Figure 2. A screenshot of the Simpathica/XSSYS Natural Language Interface. The “Query Maker”
window is used to type in English queries. A Help System showing the intuitive meaning of typical queries
can be also consulted to facilitate the expression of the Temporal Logic queries.
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The Web based interface maps some of the simpler functionalities of the XSSYS
application.  The Web based interface is organized in three pages: (a) “dataset selection”
page, (b) a “query” page, and (c) a “results” page.  The three pages are shown in Figure 3,
Figure 4, and Figure 5.  The dataset chooser connects to our NYUSIM database, which is
a repository of simulation traces.  Simpathica and XSSYS write and read this database
thus making it possible to keep a well ordered list of datasets along with their necessary
meta-data for identification and explanation.

Figure 3. This is the opening page of the “Query Maker Online” (QMO) system viewable at
http://bioinformatics.nyu.edu:3001/Projects/qmo/lasp/home. The system shows a list of the “experiments”
for which the NYUSIM database has datasets visible to the general public.

Figure 4. Once an experiment has been selected, QMO shows a page with a list of the “variables”
appearing in each of the datasets form the experiment.  The user can enter a query involving those variables
in the text area on the right.
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Figure 5. After accessing the NYUSIM database, loading the data on the QMO server and performing the
query analysis, the final page shows the result.

Sentence Generation of “Biologically Interesting Factoids”

At its core the XSSYS system manipulates a set of CTL temporal logic formulae.  Each
formula is easily translated into a natural language (English). Given this features, we
explored the possibility to automatically generate several temporal logic formulae in
increasing order of complexity (i.e. formula length,) with the intent of discovering new
facts about a dataset, and to produce a “ biologically  interesting factoid” story for the
consumption of a biologically savvy reader.  I.e. we have set up a traditional generate-
and-test framework.  In the following we describe the generation algorithm and discuss
some of its features.

The generation algorithm must use several heuristics to constrain the size of the set F of
formulae to be analyzed, as a simple counting argument on the structure of the concrete
syntax of CTL formulae, reveals that the number of formulae of “syntactic depth” d is

† 

W 22d( ): obviously too large a number to consider, even for the simple case of d = 3.

Given a number of relatively straightforward heuristics, the formula generation and
testing procedure can be kept under control, although the worst case scenario still applies.
The heuristics involved are based on a (arbitrary) lexicographic ordering of the variables,
and on an accounting of the symmetries in the binary operators of the underlying
temporal logic language.  Also, user supplied ranges for the values of the variables
involved are taken into account.  In essence the procedure performs the following steps:

Procedure Formula Generation:
1. Input: a set of variable VS from an experiment; the element of VS are the

“story variables.”
2. For each formula template from the set:

a. Represses(P1, P2).

b. Activates(P1, P2).

c. Steady_state().

d. Constant(P, t1, t2).

e. Formulae representing the response of the system to a particular input
at time ti (e.g. an impulse or a sustained input.)

generate the set of all possible combinations of instantiated formulae using
only the elements of VS.
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Because of the set of heuristics used, the resulting set of formulae has limited size.  Once
the set of formulae F has been generated, then we can check each of its members against
the datasets comprised in an experiment.  Figure 6 shows the overall architecture of the
“story generation” system.  The result will be a set of valuations for each f  Œ  F with
respect to each dataset; e.g. a dataset corresponding to a wild-type and one corresponding
to a mutant, as in the Yeast Cell Cycle example given before.

DatasetDatasetDatasetDataset
Formula

Generator

Formula
Formula

Formula

Temporal
Logic Analysis

Natural Language
Story Generation

HTML
file

Figure 6. The architecture of the “biologically
interesting factoid” generation system. Given a
number of datasets (logically belonging to a given
“experiment”, the system generates a set of CTL
formulae using a number of carefully chosen
heuristics (to constrain the number of formulae being
generated).  Each formula is fed to the temporal logic
analyzer XSSYS, which is essentially a restricted
model-checker, and the results of such analysis is
then fed to the Natural Language Generation system
which finally produces an HTML formatted file.

Given a number of datasets and a set of “interesting” values for the variables in VS, the
“factoid generation” system produces an HTML formatted output.  Table 1 shows an
excerpt from the output produced by analyzing three datasets obtained by simulation of
the Yeast Cell Cycle  models described in (NT97).
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Concluding Remarks
We have presented a simple natural language interface for a time course data analysis
tool that tackles the problem of making a mathematically sophisticated system more
accessible to a biologist with little mathematical training.  We have also presented an
initial system that is capable of generating an English rendition of a long list of simple
facts about a given biological system for which we have a simulatable model or an
experimental “trace”. While our systems rely on a large body of literature and experience,
it also represents a novel integration of a wide array of techniques to solve a general
problem facing bioinformaticists and biologists.  Our implementations can obviously be
improved in several ways. For instance, we are working closely with biologists to expand
the set of predefined “verbs” and the grammar rules to account for more elaborate
questions. Moreover, we are also taking into account more sophisticated temporal logic
formulations that will lead to the manipulation of more expressive questions.
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